Research Cyberinfrastructure Center

| Resources | Update | Utilization |

Philip Papadopoulos ppapadop@uci.edu Joulien Tatar jtatar@uci.edu Nadya Williams npw@uci.edu

What do we do? Infrastructure for Researchers

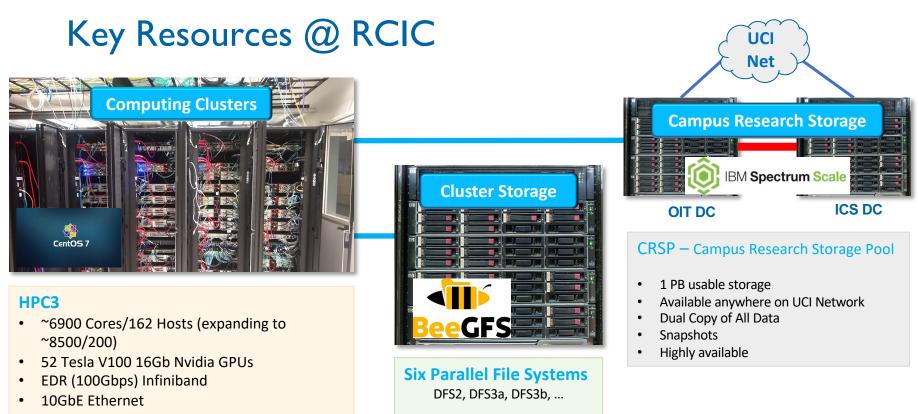
RCIC builds and maintains real infrastructure for

- ✓ High-performance and high-throughput computing
- \checkmark Research data storage and analysis,
- \checkmark Scientific software tool integration.

Computing and data infrastructure is operated in a *shared financial model* where campus researchers are given no-cost access to a baseline level of computing and highly-reliable storage.

Faculty can also purchase additional capacity and capability using grant or other funds.

RCIC Faculty Oversight


Executive Committee – Chair Filipp Furche, Professor, Dept. of Chemistry

- Help with strategic guidance and direction
- Approval chain for large purchases (> \$100K) and high-level policy
- Meet approximately quarterly

Advisory Committee

- About 30 researchers from disciplines across UCI
- Key feedback on what RCIC does right and wrong. They are not shy about expressing their views.

Formation of RCIC was the result of the UCI Cyberinfrastructure Vision 2016

- Minimum
 - 4GB memory/core
 - AVX2 instruction set (Epyc/Intel CPUs)

- 3.9PB usable storage
- ~6GB/sec bandwidth/System
- Single Copy/No Snapshots

High-level View of what things cost

No Cost Allocations

Role	HPC3 Core Hours	GPU Hours	Home Area Storage	DFS Storage	CRSP Storage
Faculty	200K hours/year ¹	By Request ~2K hours/year ¹	50GB	1TB in Pub	1 TB
Student	1000 hours		50GB	1 TB in Pub	

Cloud-like Costs

	HPC3 Core Hours	GPU Hours	Home Area Storage	DFS Storage	CRSP Storage
Faculty	\$.01/core hour	\$0.32/GPU hour	Not expandable	\$100/TB/5 years	\$60/TB/year
AWS Equivalent	C5n.large \$.063	P3.2xlarge \$1.95			S3 ² Standard \$242/TB/year

¹ Exact amounts dependent on # requests/available hardware

² Comparison difficult - S3 has higher durability, CRSP has no networking fee.

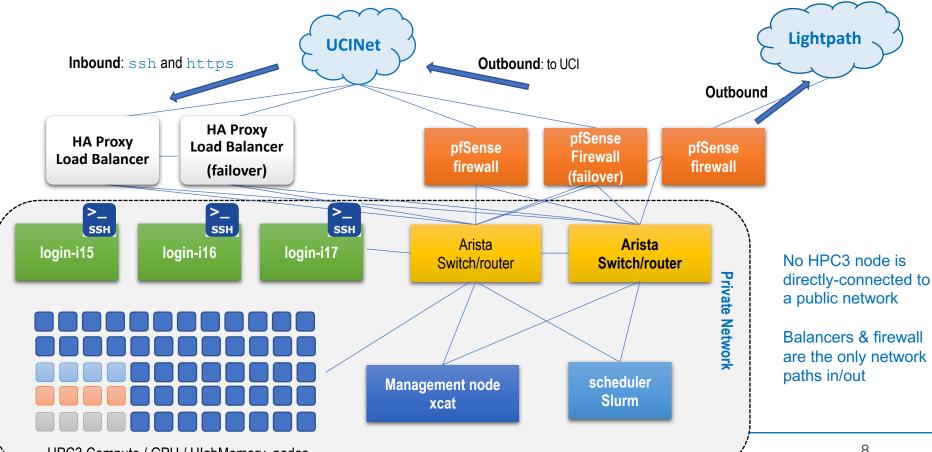
HPC³ – <u>High Performance</u> <u>Community Computing Cluster</u>

- Short History And Expansion
- Different Use Cases of HPC3
- How HPC3 is physically connected to UCI
- Queueing and Allocations
- Software Environment
 - What happens when you ask RCIC to install software
 - Organization
 - Insights to usage
- How has HPC3 been used since Jan 1, 2021

Short History of HPC3

Predecessor - HPC

- Catalyzed shared computing at UCI
 - Hat-Tip to retired personnel: Joseph Farran , Harry Mangalam, Allen Schiano, Dana Roode, and Garr Updegraff
- Expanded primarily through faculty node purchases (condo computing)
- Reached end of life Dec 2020 10500 cores at its peak. Cores 1-9 years in age


HPC3 catalyzed by NSF Major Research Instrumentation Grant

- PI: Chandramowlishwaran
- Co-Pls: Furche, Roode

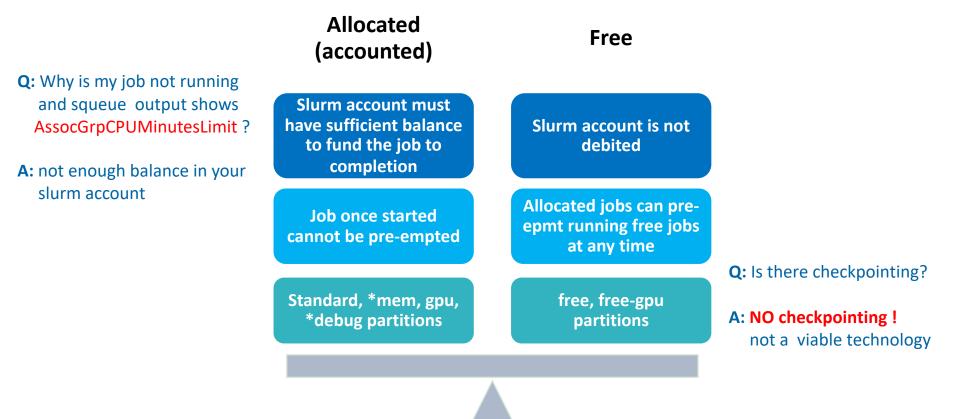
Initially constructed from Grant, Faculty Purchase, and Significant UCI investment

- RFP (won by HPE) in Oct 2019. ~100 CPU and GPU nodes (4000 cores total).
- Most nodes arrived after March 2020 during shutdown
- Expanded through faculty/UCI purchase Oct/Dec 2020
- Expanded via compatible HPC nodes moved to HPC3 Jan 2021
- Expanded via UCI/Faculty purchase via April 2021 Competitive Bid (nodes arriving now)

Network Connectivity of HPC3

HPC3 Compute / GPU / HIghMemory nodes

Different Ways People are Using HPC3

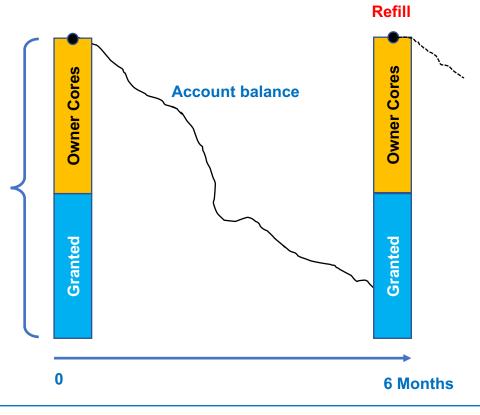

- I. Most common: command-line, batch queue, job submission ssh hpc3.rcic.uci.edu
- 2. Teaching courses Quarter:
 - Grad courses Lower division physics labs Short-term:

UCI machine learning hackathon

- 3. Specialized Jupyter Labs
- 4. Via Singularity Containers

+ 10	₫ C	🖾 Launcher				
Filter files by na	me Q					
1			Notebook			
ame 🔺	Last Modified					
20200924	7 months ago 🍵					
apollo	18 hours ago			M		
biojhub3	14 days ago		-			
container	10 months ago		Python 3	Matlab	R	
cuda-sam	10 months ago					
examples	a year ago		>_ Console			
gem5	6 months ago		Console			
hdf5r	18 days ago					
homer	5 months ago			N A		
hpc-jupyt	10 months ago			IVI		
hpc-jupyt	a year ago		Python 3	Matlab	R	
Imp	5 months ago					
midas	10 months ago		_			
MIDAS	10 months ago		\$_ Other			
NAMD	10 months ago					
ncbi	8 months ago			_	M	
ntJoin-1	7 months ago		\$_			
perl5	a year ago		Terminal	Text File	Markdown File	Show Contextual
physics52	a month ago		remittdi	iext file	IVIAI KOOWIT FILE	Help
physicshu	seconds ago					

Two Types of Jobs


Allocated Jobs (standard, *mem, GPU queues)

- All allocated jobs use a common "currency" (SU)
- CPU cores cost I SU/Hour
 - There is no differentiation on memory used.
- GPUs cost 32 SUs/Hour
- What about owner hardware/queues?
 - Owner queues do NOT exist. Instead
 - Theoretical capacity of owner hardware is converted into SUs
 - 95% * (# cores) * 8760 hours/year 40 core node ~ 325K SUs/year
 - 95% * (# gpus) * 32 * 8760 hours/year.
 - GPU SUs and CPU SUs are not "convertible". \rightarrow need a GPU account to charge runs on the GPU queue.

Automated Refill of Allocations for labs

Fotal Allocation

- Account balances are reset every 6 months
- Each Lab is on their own cycle
- Allocations are for "the next 6 months"
- SUs not utilized in the previous 6 months are lost
- Purchased cycles can be spent over 18 months.

Policy on allocating UCI-paid cycles

Ideal – every cycle allocated is utilized

Allocation Tiers for CPU Cores (6 months horizon):

• 100K, 75K, 50K, 25K, 12.5K

Your next allocation is based on your previous 6 months of usage

- > 80% of current allocation utilized, go up one tier
- 50% 80%. Remain in same tier
- 25% 50%. Go down on tier
- < 25% go down two tiers

Limits

Philosophy

Allow users to do what they need to do. Generally, only place limits to address: stability, fairness, responsiveness

Example System-wide limits

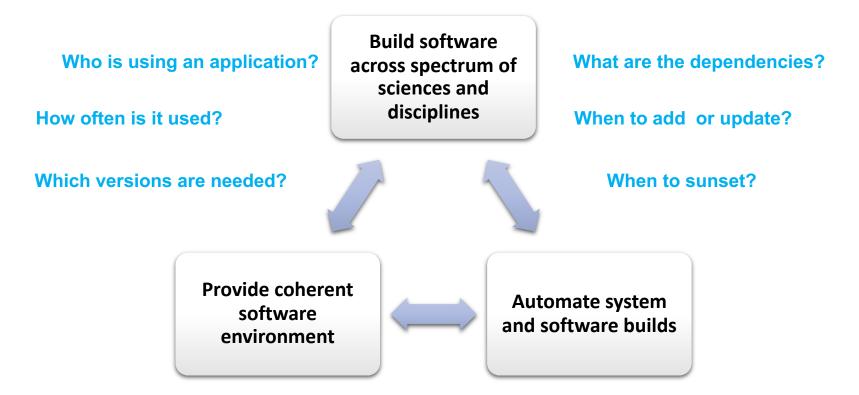
MaxArraySize	= 100000
MaxJobCount	= 50000

- When we see a file system "under stress"
 - I. Identify user/users
 - 2. Contact them to find out "what their applications are doing"
 - 3. Determine if

limits (like maxjobs or maximum cores) are needed to mitigate

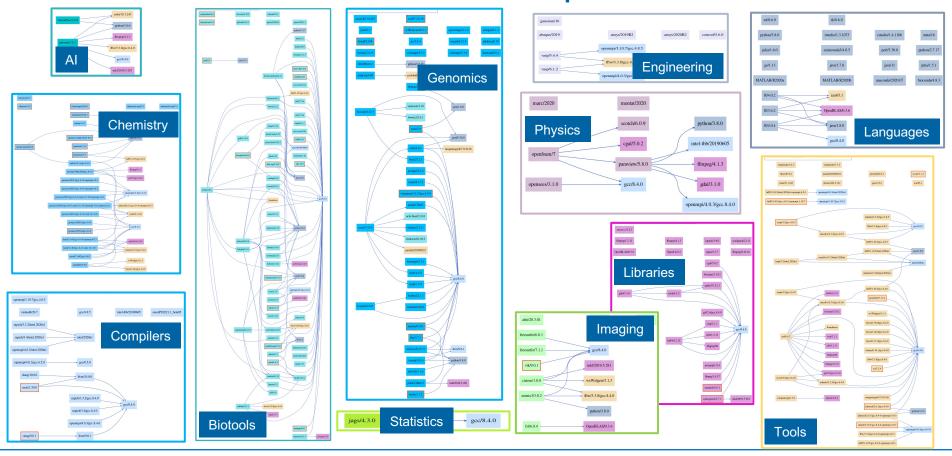
or

can a restructuring of jobs address the issue

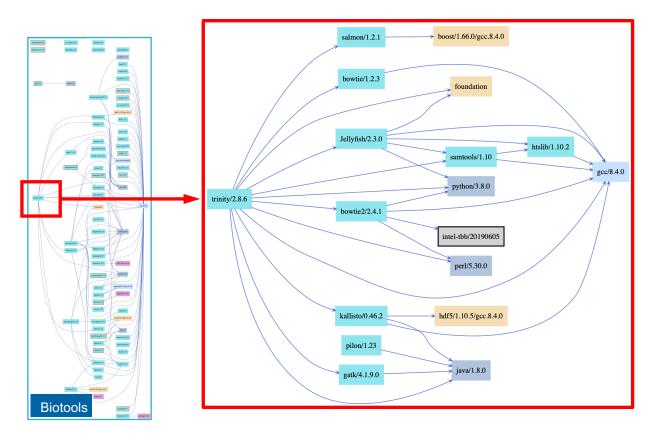

• Example user-specific limit:

Account	User	Partition	Share	MaxJobs	GrpTRES
uci_lab	panteater		1	300	cpu=800

The most vulnerable part of any cluster is storage


Software environment on HPC3

Software Applications



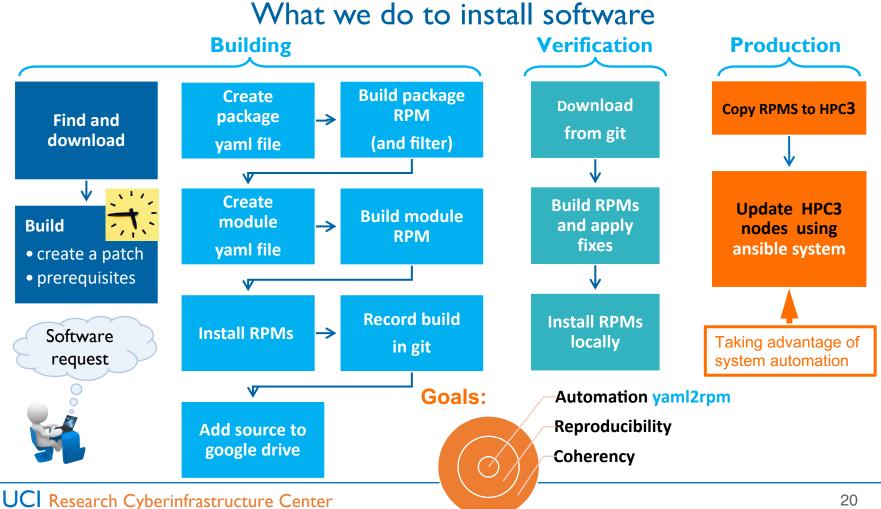
We package most applications in the OS-native format: RPM

Software Map

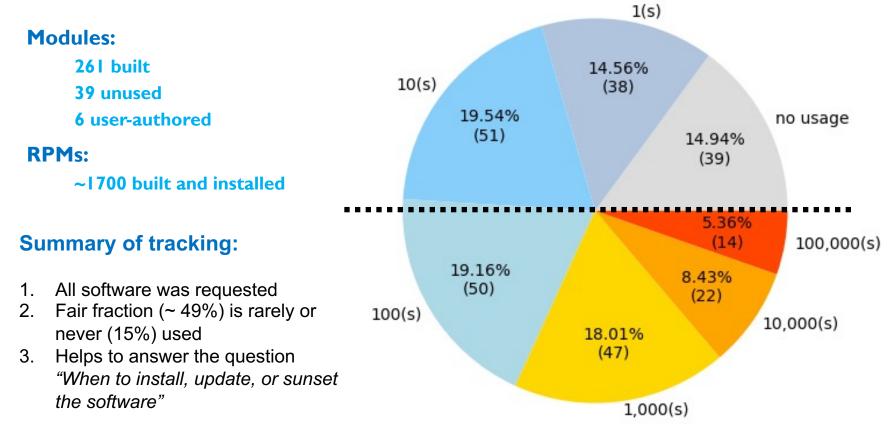
Software Map Detail

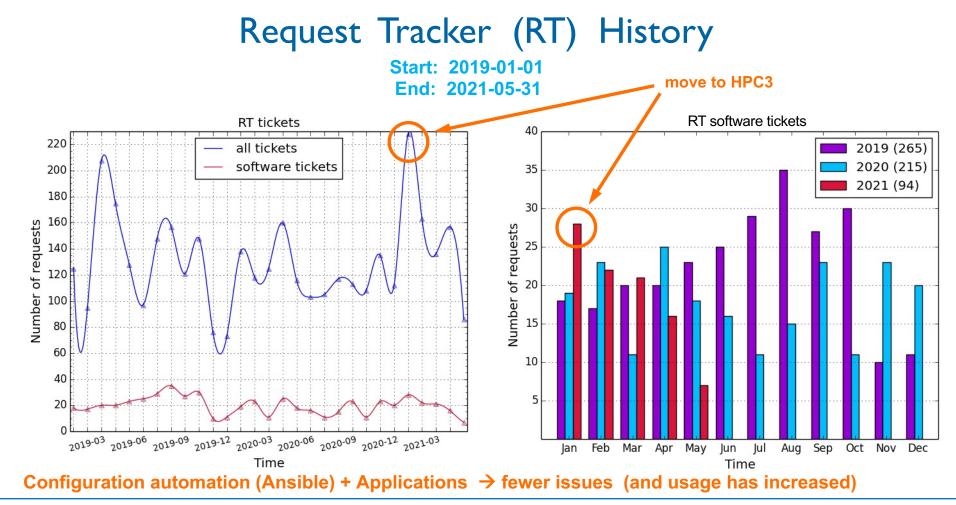
- Some apps have very deep dependencies
- Capture dependencies during the build
- Enable auto loading of dependencies
- User needs to load a single module:

module load trinity/2.8.6


Module Dependencies

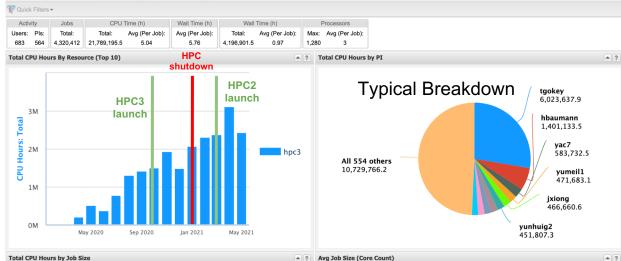
				paraview/5.6.0
AI-LEARNING: 2				AI-LEARNING
BIOTOOLS: 63	Most used modules since	Jan 1, 2021	ffmpeg/4.1.3	pytorch/1.5.1
CHEMISTRY: 21	1.5	1,106		CHEMISTRY lammps/3Mar2020/gcc.8.4.0
COMPILERS: 20	gcc/8.4.0 408	3,170	1	
ENGINEERING: 7				pyemma/2.5.7
GENOMICS: 40	Updating a single package		hdf5/1.10.5/gcc.8.4.0	BIOTOOLS
	opualing a single package			kallisto/0.46.2
IMAGING: 9	Can affect many others, how	?	\sim	bcftools/1.10.2
LANGUAGES: 22	Which ones ?			TOOLS
LIBRARIES: 24			gsl/2.6/gcc.8.4.0	netcdf-c/4.7.0/gcc.8.4.0
PHYSICS: 6				
STATISTICS: 1				ncl/6.6.2
TOOLS: 42				nco/4.9.6/gcc.8.4.0


UCI Research Cyberinfrastructure Center


PHYSICS

paraview/5.8.0

Modules Usage (since Jan I)



How has HPC3 been used since Jan 1, 2021

CPU Use Summary: Up Trend

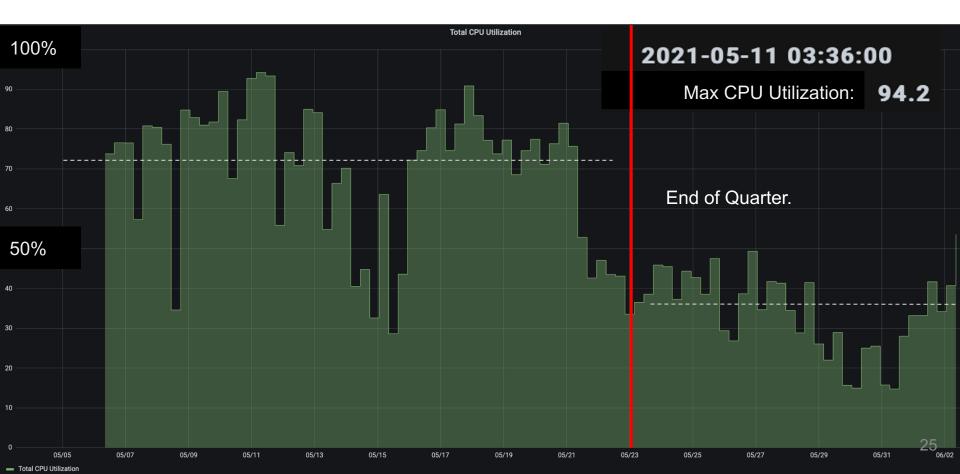
Duration: 😳 User Defined - Start: 2020-01-01 📑 End: 2021-05-28 📑 🧷 Refresh

Job Size: Per Job (Core Count) 01 02 02 02 - 8 17 - 323M 9 - 16**CPU Hours: Total** 33 - 6465 - 1282M 129 - 256 257 - 512 1M 513 - 1024 1k – 2k 0M 0 Apr 2020 Jul 2020 May 2020 Sep 2020 Jan 2021 May 2021 Oct 2020 Jan 2021 Apr 2021

2/1/2020 to 5/28/2021:

- ~ 500 active users
- ~ 1% [power] users

Total core count:


- ~ 4000 cores 2/2020)
- ~ 7000 cores 6/2021)
- ~ 9000 cores 9/2021)

! 16000 cores 1/2025)

- ~ 22M CPU hours delivered
- ~ 5 cores per job on average
- 1280 cores largest jobs

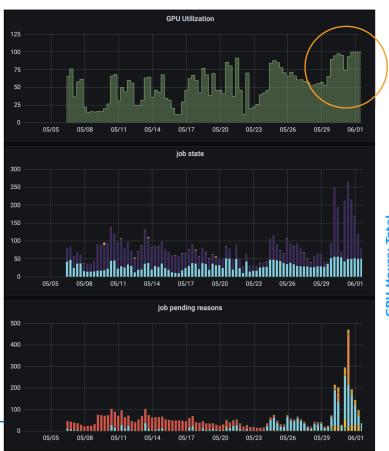
70% average CPU utilization

HPC3 CPU Utilization

Standard Partition Jobs Summary

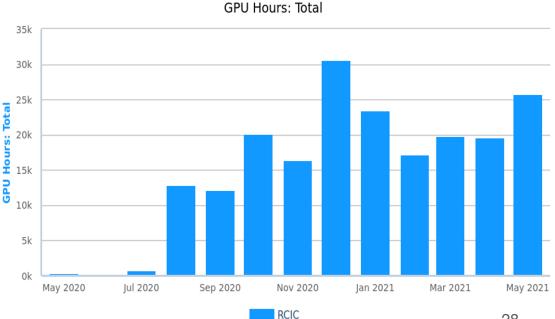
- Partition (queue) has ~5500 cores.
- Standard partition dominates by day
 - Free partition by night and weekend
- ~ 40% of jobs go through standard partition
 - Users not spending their allocations

Waiting for a job a Standard job to run is rare:


Example: Standard Pending Jobs on 5/19/21 ~ 14:35pm ~ 16,000 cores requested

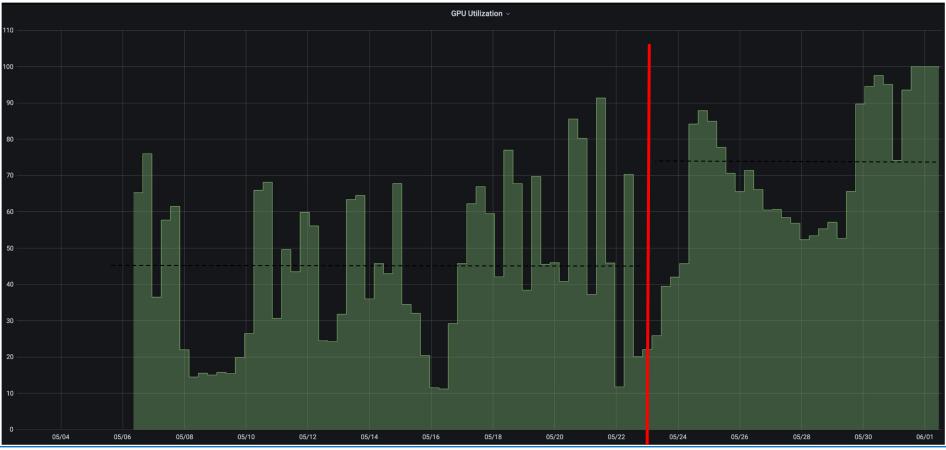
Reason for pending job? See next slide...

Standard Jobs Wait Time: Minimal


40000		Reasons for Pe	ending Jobs in S	Standard Partition			
				2021-05-19 15:00:00 – None: – ReqNodeNotAvail:	7		
35000				 Resources: Priority: AssocGrpCPUMinutesLimit: 	8734 8716 5		
30000				 Nodes_required_for_job_are_DOWN: Dependency: BadConstraints: 	0 3713 0		
25000				 JobHeldUser: AssocMaxJobsLimit: BeginTime: Prolog: 	0 7109 1 0		
20000				 JobArrayTaskLimit: AssocGrpCpuLimit: standard lack resources: 	0 0 8734		
15000				- Job taken care of			
10000				~18 hours.			
5000							27
005/05	05/07 05/09 05/11	05/13 05/15	05/17 05/19	05/21 05/23 05/25	05/27 05/	i/29 05/31	06/02

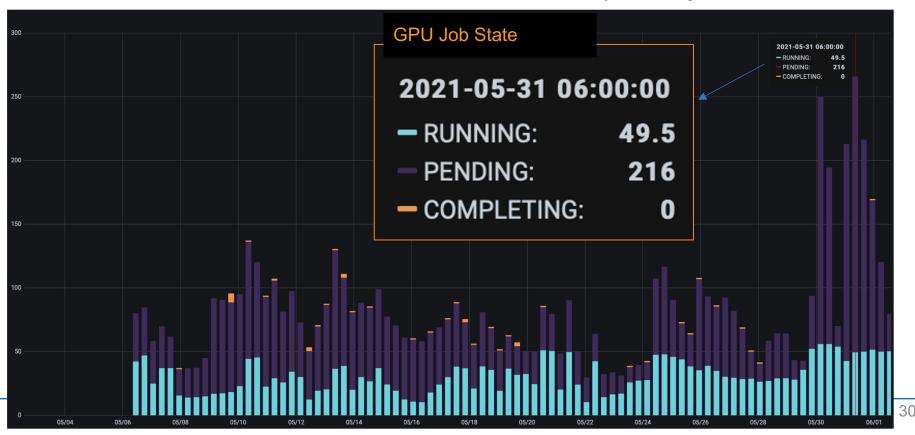
GPUs Summary

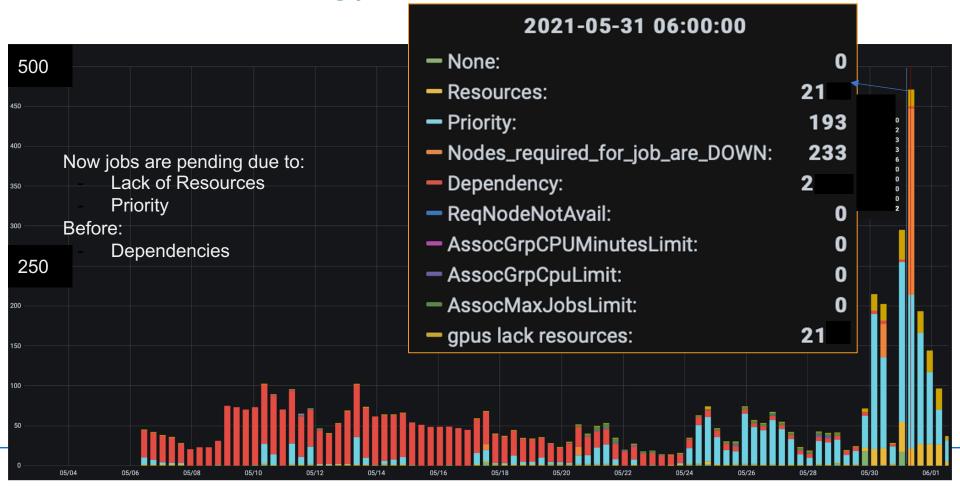
- ~ 14 nodes = 56 GPUs (V100)
- ~ 170,000 total gpu hours ~20k/month
- ~ 65% avg gpu utilization
 - Increasing as people learn how to use them •
 - There is a longer wait for GPUs than CPUs


=> Need more GPUs

28

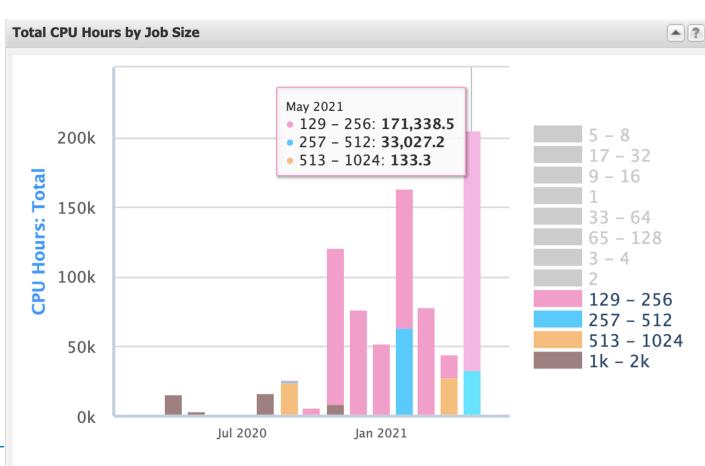
2020-05-01 to 2021-05-31 Src: HPcDB. Powered by XDMoD/Highcharts


GPU Partition Utilization - Detail


UCI Research Cyberinfrastructure Center

GPU Partition Job State

Different from Standard Partition: there are Always Pending Jobs



Reasons for Pending Jobs in GPU Partition

31

Large Multi-node Jobs: No special provisions needed to run

10^3 range in core requests

- Avg. Job size: 5 cores
- Max Job size: 1280 cores

Large Jobs [129, 1280] cores

- Use ~3% of CPU time
- Reasonable wait time

Talking to RCIC and to Each Other

- How do I ask for help/talk to RCIC?
 - Send email to <u>hpc-support@uci.edu</u> This automatically creates a help ticket
 - Read that fine website: <u>https://rcic.uci.edu</u>

- What about talking to RCIC and the other users at UCI?
 - Join the new! Google group https://groups.google.com/a/uci.edu/g/rcic-users
 - Chat with us on Slack: <u>https://rcicos.slack.com/</u>

C in rocudedutpolisium/tml		೩ ೫ 📇 ۵ 🛚
ble of Contents Overview 1.1. HPC3 Queue Structure 1.2. HOW accounts are charged 1.2.1. Free lobs		cture Center
1.2.2. Allocated Jobs 1.2.3. Recommendations	Home User Guides Physical Resources News Recharge Rates	About
1.2.4. Quota Enforcement luick Start 2. Batch Job 3. Job Status 4. Immediate job 5. Interactive Job 6. Interactive GUI job 7. Attach to a Job	Sturm Reference 1. OVCP Suffware Environment PSC3 WI Suffware Environment Suffware Environment Suffware Environment Suffware Enviconment Suffware Enviconment <td></td>	
3. Email notification 9. Node Selection Using	Slurm uses the term <i>partition</i> to signify a batch queue of resources. HPC3 has different kinds footprints, and nodes with GPUs. Jobs running in some queues will charge core-hours (or GP	
10. Default Settings 2.10.1. Node Information 2.10.2. Node Memory 2.10.3. Queue configuration	Please do not override the memory defaults unless your particular job really requires Million jobs on HPC3 indicated that more than 98% of jobs fit within the defaults. With footprints, the scheduler has MORE choices as to where to place jobs on the cluster.	
lonitor jobs .1. job History .2. job Info	We provide the numerous examples for how to run array jobs, request GPUs, CPUs, a	and memory

Memory is allocated per-CPU core. When you request more cores, your job is allocated more memory

> 3.2. Job 3.3. Job Statistic

Resources

- Github repositories for the software builds <u>https://github.com/RCIC-UCI-Public</u>
- RCIC website <u>https://rcic.uci.edu</u>